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abstract: Temporal variation can facilitate the coexistence of
competitors through the temporal storage effect. However, this the-

Levins 1964), frequency-dependent predation (Vance 1978),
and the storage effect (Chesson and Warner 1981). How-
oretical result was derived with the assumption that species have
high dispersal rates. Here, I show that limited dispersal diminishes
the storage effect in the classical lottery model. Populations become
highly clustered during invasion, and population growth rates and
extinction probabilities are functions of cluster size. I adopt the term
“nucleation” from the physics literature to describe these character-
istics. I developed approximations that incorporated nucleation to
capture the spatiotemporal dynamics of the simulated model. Using
analytical results from these approximations, I show that limited dis-
persal dampens asynchronous fluctuations in reproduction between
species. This makes species appear to be more similar in their growth
rate responses to the environment, thus reducing the potential for the
storage effect. Theoretical results lead to simple rules relating average
dispersal distances to relative reductions in potential coexistence. To
demonstrate their use, I perform a preliminary analysis of two plant
communities: tropical trees and desert annuals. In both communities,
small-seeded species that disperse short distances on average have the
strongest reductions in potential coexistence; species with wind- or
animal-driven dispersal disperse farther distances, on average, and ex-
perience moderate or small reductions.

Keywords: dispersal, spatial pattern, coexistence, community dynam-
ics, biological invasion, nucleation.

Introduction

Competition between species for shared resources can limit
ecological diversity. The stable coexistence of multiple com-
petitors requires competitive interactions to be stronger be-
tween conspecifics than between heterospecifics. This causes
species to limit their own growth rates more strongly, pre-
venting superior competitors from attaining the densities
necessary to drive other species extinct (MacArthur and Lev-
ins 1967). Various mechanisms can promote coexistence in
this way, including resource partitioning (MacArthur and
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ever, the potential for coexistence can be affected if the
dispersal of individuals or propagules is limited. These ef-
fects have been well enumerated for certain coexistence
mechanisms, such as classic resource partitioning (Neu-
hauser and Pacala 1999; Bolker et al. 2003) and the spatial
storage effect (Lavorel and Chesson 1995; Snyder and
Chesson 2003), but are not as well understood in the con-
text of other coexistence mechanisms, such as the tempo-
ral storage effect.
The temporal storage effect operates when fluctuations in

species-specific growth rates and a long-lived stage work in
concert to reduce interspecific, relative to intraspecific, com-
petition (Chesson and Warner 1981). If growth rate fluc-
tuations are sufficiently asynchronous, then each species
will experience separate periods of favorable growth. This
promotes intraspecific competition and decreases interspe-
cific competition, because individuals compete primarily
with conspecifics during these periods. However, interspe-
cific competitiononly decreases relative to intraspecific com-
petition if a long-lived stage is present to act as a buffer
against the negative population growth that would other-
wise occur during an unfavorable period (Chesson 2000b;
Adler et al. 2006).
In many systems where the storage effect is important,

individuals reproduce via propagules with limited dispersal
ranges, as in grasses (Adler et al. 2006), desert annuals
(Pake and Venable 1995; Angert et al. 2009), tropical trees
(Kelly and Bowler 2002; Usinowicz et al. 2012), and poten-
tially even coral reef fish (Chesson andWarner 1981). Lim-
iting the movement of populations leads to spatial hetero-
geneity in the form of clusters of individuals (endogenous
heterogeneity; Seidler and Plotkin 2006; Bolker 2003; Le-
vine and Murrell 2003). The implications of this type of
heterogeneity for coexistence by classic resource partition-
ing depend on certain characteristics of species. Coexistence
may be facilitated when a superior competitor is more lim-
ited by dispersal (Bolker et al. 2003), but coexistence may
be reduced when dispersal is symmetrical between species
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(Neuhauser and Pacala 1999). These conclusions also de-
pend on characteristics of the environment. If population

an area of research referred to as nucleation (Avrami 1940;
White 1969; Korniss and Caraco 2005). Each approximation
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growth rates of competitors are correlated with patchy re-
sources (exogenous heterogeneity), dispersal limitation will
increase the potential for coexistence (Snyder and Chesson
2003).

I constructed an explicitly spatial simulation model to
investigate the impact of dispersal limitation on coexis-
tence by the temporal storage effect. The simplest nonspa-
tial model capable of producing the storage effect is the
lottery model. Therefore, I adapted the lottery model for a
discrete-space lattice, where each lattice square represents
a colonization site capable of supporting a single reproduc-
tive individual. Offspring have a simple dispersal kernel, so
that the offspring vying for an available site come only from
a local interaction neighborhood, defined as the set of sites
within dispersal distance. I analyzed the dynamics of the sim-
ulation model to understand how limited dispersal impacts
the ability of one species to invade its competitor from low
density, which is the signature effect of stabilizing coexistence
mechanisms. I quantified spatial pattern on the basis of the
density, size, and number of clusters for different parameter
ranges. I then used a set of approximation techniques to iden-
tify specific ways in which spatial pattern mediates invasion
rates.

Coexistence can be demonstrated using the invasion growth
rate. This gives the expected population growth rate for a spe-
cies recovering from low density (termed the invader) against
established competitors (termed the residents). Coexistence is
only possible if the invasion growth rate is positive for each
species in turn (Turelli 1978; Chesson andWarner 1981). The
overall bounds on coexistence can then be found by ana-
lyzing changes in the invasion growth rate across different
parameter ranges. For some models, it is possible to find a
mathematical expression for the invasion growth rate, of-
ten referred to as the invasion criterion. When the focus is
on a specific scenario or system, this is not strictly necessary,
because the invasion growth rate can be measured directly
from field-parameterized simulations or models (Cáceres
1997; Adler et al. 2006; Angert et al. 2009; Godoy and Levine
2014). However, the invasion criterion can reveal which de-
mographic features most strongly influence coexistence, po-
tentially reducing complexity and focusing investigation on
key parameters.

Deriving the invasion criterion for the limited-dispersal
lottery model requires an analytically tractable version of
the model. Thus I first approximate the spatial dynamics
of the full model and then find the invasion criterion of
the approximation. I compared a total of five approxima-
tions, including limited-dispersal and pairwise approxi-
mations with well-established histories of use in ecology
(Hiebeler 1997, 2000; Ives et al. 1998), and three related
approximations originating from the physics literature in
This content downloaded from 23.235.32
All use subject to JSTOR
accounts for the influence of spatial pattern through anunder-
lying model of the average interaction neighborhood. An ap-
proximation is successful when it matches the observed inva-
sion growth rate of the limited-dispersal lottery model. The
success of an approximation to represent dynamics during
low-density growth can be seen as a test of the underlying
model of spatial interactions. The invasion criterion for a
successful approximation can then be used to infer which
characteristics of competing species impact coexistence.
Nucleation theory provides a framework that can account

for clusters and demographic stochasticity during growth
from low density (Gandhi et al. 1999; O’Malley et al. 2005),
bothofwhich contribute to dynamics in the limited-dispersal
lottery model. The three nucleation approximations adapted
here share the assumption that population growth is cluster-
based and recast dynamics as a series of transitions between
cluster sizes. Each is applicable under different conditions:
a transition matrix for a Markov chain that represents all
possible transitions between cluster sizes and is most prac-
tical when spatial extent is small (White 1969); an exponen-
tial approximation, known as Avrami’s law, that is accurate
in the limit of very large lattices (Avrami 1940; Korniss and
Caraco 2005); and a difference approximation, conceptu-
ally based on birth-death models (Gurney and Nisbet 1975;
Snyder and Nisbet 2000), that considers the most likely clus-
ter transitions for a given population size.
Demographic stochasticity is an important process to

consider for the overall persistence of finite populations, be-
cause it can cause extinction even when species should oth-
erwise be able to persist. However, the main goal here is to
determine the impact of limited dispersal on the storage
effect, which means distinguishing the contrasting impacts
of demographic stochasticity from stabilizing coexistence.
Nucleation theory provides a framework for simulating and
analyzing low-density growth under these conditions by al-
lowing a constant, low level of invader propagules to arrive
wherever a resident dies (Korniss et al. 2000; Korniss and
Caraco 2005).Many colonization attempts will fail, but even-
tually the invader will create a cluster of sufficiently large
size to establish. This critical cluster size, cc, divides these
two phases of low-density growth. Below cc growth is a ran-
dom process with properties determined by the background
propagule rate, lattice size, and speciesmortality rates. Above
cc, the invader population overcomes demographic stochas-
ticity, and the growth rate is determined by competitive dif-
ferences between species (Korniss and Caraco 2005); the
growth rate above cc is most comparable to the classic inva-
sion growth rate.
The complexity of spatially explicit population models

can make it difficult to connect results to empirical stud-
ies of real communities. Here, I adhere to the theoretical
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framework of coexistence based onmutual invasibility (Tu-
relli 1981; Chesson 2000b), since its applicability for analyz-

on a value of 0 or 1. Individuals die at a rate d that is the
same for both species. When an individual dies, its site is
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ing empirical systems has been demonstrated. The most
successful spatial approximation can be parameterized with
field data in ways that are then directly comparable with
previous studies (e.g., Adler et al. 2006; Angert et al. 2009;
Usinowicz et al. 2012). Comparing the invasion criteria
of the spatial approximations to that of the classic lottery
model leads to simple rules for determining when dispersal
limitation reduces the strength of the storage effect. Finally,
I apply these results to a preliminary analysis of the impact
of dispersal limitation on coexistence in two communities
where the storage effect is important: desert annuals and
tropical trees.

Although this article contains a substantial amount of
technical development, the main results can be interpreted
with the background provided in the introduction. Several
quantities used to analyze cluster dynamics are introduced
in the second part of “Methods,” but their meanings are
reiterated briefly in the corresponding “Results” sections.
A more detailed summary of the framework of mutual in-
vasibility is provided in the first “Methods” subsection, af-
ter the limited-dispersal lottery model is defined. The can-
didate spatial approximations are described in the final
part of “Methods” whereas their derivations and the inva-
sion criterion of each are found in the Appendixes (apps.
A–C available online).

Methods
Limited-Dispersal Lottery Model
The limited-dispersal lottery model assumes that two spe-
cies compete for fixed locations in space that can only be
occupied by a single adult individual. Seed production by
individuals of each species is variable through time. Here,
I treat it as a random process where species have specific
means and variances, and asynchrony between species is
measured by an interspecific correlation coefficient. Seeds
can only spread within a limited radius, and establishment
(i.e., capturing a site to become an adult) can only occur at
an empty site. Each generation, an individual seed chosen
to establish at an empty site is picked at random from among
all of the seeds at an open site; thus, a species’ likelihood
of capturing a site is proportional to the number of seeds
present at that site. Because dispersal is limited, competition
becomes locally limited to subsets of the population.

I modeled two species, a resident (species 0) and an in-
vader (species 1), interacting on a square lattice of size L2

with periodic boundary conditions; thus, a seed dispersing
off the edge of the lattice is returned to the opposite side
of the lattice. Each site on the lattice supports only a single
individual of one species; at each time step t, a site zxy takes
This content downloaded from 23.235.32
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captured by either species probabilistically according to the
relative numbers of seeds that individuals of each species
disperse to that site. Capture occurs in the same time step
at which mortality takes place, so there are no empty sites.
Reproductive adults of each species produce seeds at

rates R0(t) and R1(t) in time step t. These rates are modeled
as lognormally distributed random variables to constrain
values to be positive, with means R0 and R1, variances j2

0

and j2
1, and correlation r between species, so that, taken to-

gether, they define the random vector R. High covariance
in R simulates species with similar responses to environ-
mental fluctuations; reducing covariance (done by decreas-
ing r in the following investigations) makes species increas-
ingly different in their responses to the environment and
increases the potential for the storage effect.
Seeds are dispersed according to a species-specific dis-

persal kernel K(x, y; F) describing the likelihood that any
seed will travel a given distance from the parent plant. I
model dispersal using a Moore neighborhood with a speci-
fied Chebyshev distance, and I later extend development to
include more realistic (e.g., exponential) kernels (app. C).
All sites within a predefined neighborhood Nz p f(za, zb) : j
za–zxj! rφ,jzb–zyj! rφg receive R0(t) or R1(t) propagules
from a reproductive adult centered at zxy. The Chebyshev
distance, which I refer to henceforth as the radius of dis-
persal rφ, determines the distance (in units of sites) that prop-
agules can travel. The diameter of dispersal dφ p 2rφ 1 1,
and the total area ofNz is given byFp d2

φ. The simplest ker-
nel is rφ p 1, in which case the dispersal kernel is a three-
by-three block, centered on a reproductive adult plus its eight
nearest neighbors (including corners).
The dispersal neighborhood Nz defines the interaction

neighborhood, those individuals that can colonize a site made
available by mortality. When the individual at zxy dies, colo-
nization is only possible by individuals in Nz. If there are
h1,xy(t) adults of the invader species in Nz, then the colo-
nization rate for the invader species at an empty site is the
probability

gxy(t)p
h1,xy(t)R1(t)

h1,xy(t)R1(t)1 (F2 h1,xy(t))R0(t)
. (1)

The form of equation (1) is based on the assumption that
mortality rates are equal between species and removes terms
for the local resident population, h0, xy(t), from the equation
by using Fp h0,xy(t)1 h1,xy(t). Species 1 has been defined as
the invader, and species 0 has been defined as the resident.
Applying a mean-field approximation to the limited-

dispersal model recovers the classic lottery model (app. A).
Specifically, the dynamics of the limited-dispersal model ap-
proach those of the classic lottery model as dispersal be-
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comes global (i.e., as dφ → L and L goes to infinity). In the
classic lottery model, the quantity gmf (t) represents the col-

analogously to standard (Pearson) correlation coefficients:
negative values indicate nonrandom dispersion, because
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onization probability for species 1,

gmf (t)p
p1(t)R1(t)

p1(t)R1(t)1 (12 p1(t))R0(t)
. (2)

The quantity p1(t), which replaces h1,xy(t) from equation (1),
tracks the global population of the invader and is related
to the population of the resident by p0(t)1 p1(t)p 1. The
form of gxy(t) is nearly identical to gmf (t), the only difference
being that interactions occur locally for the former and glob-
ally for the latter.

Stable coexistence requires that both species have posi-
tive population growth rates when recovering from low den-
sity. For the classic lottery model, invasion growth rates can
be approximated analytically by considering what happens
as either population approach zero, which leads to the classic
expression (Chesson and Warner 1981)

E

�
log

�
11 d

�
R1(t)
R0(t)

2 1

���
1 0. (3)

Here E[ ] denotes an expectation over time. Although equa-
tion (3) is written in terms of the invader, this condition
must be true for both species 1 and species 0 in turn as in-
vaders for stable coexistence to be possible.

Simulations of the limited-dispersal lottery model are
used directly to test for coexistence and measure invasion
growth rates. Here, the invader is ascribed a constant, low-
level introduction rate of propagules b to accommodate de-
mographic stochasticity. Analyses presented here use bp
1024, unless otherwise noted. Thus, even in the absence of
any reproductive adults (e.g., p1(t)→ 0), the invader species
will have a very small probability of colonizing an avail-
able site. Additionally, the invasion growth rate is measured
as p1(t) approaches cc in the simulation, whereas it is calcu-
lated as p1(t) approaches zero in the classic invasion growth
rate. The value of cc can be identified from simulations as
the value of p1(t) at which a population is equally likely to
reach its equilibrium population as it is to go extinct, and
an analytical expression for cc is derived in appendix B.
Whenever coexistence is measured, this procedure is per-
formed for both species 1 and species 0.

Spatial Pattern in the Limited-Dispersal Lottery Model
I used two common statistical measures to classify spatial

pattern in the limited-dispersal lottery model. Moran’s I
quantifies clustering of the invader at the global scale by cal-
culating correlations between neighbors (Moran 1950). It
returns values ranging from 21 to 1, which are interpreted
This content downloaded from 23.235.32
All use subject to JSTOR
sites tend to be different than their neighbors (a checker-
board pattern at Ip21), and positive values indicate non-
random clumping, because sites tend to be like their neigh-
bors (complete segregation at Ip 1). I also calculated the
(empirical) semivariogram at each time step (Cressie 1993),
which measures the degree of correlation between sites as a
function of their separation distance instead of only nearest
neighbors. I report the range of the semivariogram, rs, which
represents the maximum distance at which sites appear cor-
related (Cressie 1993), to indicate cluster size. The value of rs
was calculated by first finding the maximum value of the
semivariogram and then determining the distance at which
the semivariogram reached 95% of this value.
I investigated changes in these results as d is varied across

the range (0, 1) and r is varied across the range (21, 1).
In the classic lottery model, interspecific, relative to intra-
specific, competition is determined by R and d and more
strongly by the former (Chesson and Warner 1981). More
attention is paid to changes relative to R; because d is sym-
metrical and constant, it will only weakly influence inva-
sion growth rates. Differences in j2

1 and j2
0 also contribute

to coexistence, but these values are unbounded; therefore,
it is more convenient to vary r to reproduce the full range
of competitive dynamics. I calculated Moran’s I and the
semivariogram range, rs, for different combinations of r
and d at three points of population growth: the critical ra-
dius from nucleation theory, twice the critical radius, and
as species approach stochastic equilibrium (104 generations
after populations have reached the size of twice the critical
radius).
Nucleating systems demonstrate two distinct regimes of

growth based on whether the population consists of a sin-
gle cluster or multiple clusters. Population growth occurs
through a single cluster when both L and b are small. In-
creasing either (or both) parameters eventually allows for
multiple clusters (Rikvold et al. 1994; Richards et al. 1995;
Korniss et al. 2000; Korniss and Caraco 2005). These two
growth regimes are compared on the basis of htii, the time
until establishment of the first critical cluster (the nucle-
ation time), and tg, the duration of invasive growth, defined
as the time from htii to predefined population threshold F.
The value of F is set to half of the equilibrium density of
the invader by convention (Richards et al. 1995; Korniss
and Caraco 2005). An equation for the equilibrium density
of the invader is given in appendix B.
Single-cluster growth is a Poisson process, and the time

it takes to reach a specified population size during growth
from low density is described by an exponential distribu-
tion. The cumulative distribution for Pinv(t), the probabil-
ity of seeing an invader cluster of a given size, is as follows
(Richards et al. 1995; Korniss and Caraco 2005):
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Pinv(t)p

(
0 for t ! tg

12 exp

�
2
t2 tg

�
for t 1 t

)
. (4)

I define the subset of sites reachable by the invader as
NI(p1) and the subset reachable by the resident as NR(p1);
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In the multicluster regime, the global density of the invader
is a sum over many clusters, resulting in spatial averaging.
This means that Pinv(t) is Gaussian, and the correspond-
ing cumulative distribution is given by the error function,
erf p 2p21Ex

0
e2t2dt, with mean htii and variance ht2i i (Rich-

ards et al. 1995; Korniss and Caraco 2005):

Pinv(t)p 12
1
2

�
11 erf

�
t2 htiiffiffiffiffiffiffiffiffiffiffi
2ht2i i

p ��
. (5)

I analyzed simulations of the limited-dispersal lottery model
to determine whether the dynamics are consistent with these
expectations across a range of parameter values. The pres-
ence of both regimes of cluster growth, fit by equations
(4) and (5), suggests that nucleation dynamics are present
in the model. I surveyed broadly across parameter space using
a maximum-likelihood approach to fit parameters htii, tg,
and ht2i i, fixed bp 1024, and calculated the goodness-of-fit
of equations (4) and (5) from Lp 16 to 256 for each pa-
rameter combination; this should encompass both single-
and multicluster regimes, if they exist. I recorded the value
of R2 to assess the goodness-of-fit and considered R2 1 0.98
as a successful fit. Single- or multicluster growth was indi-
cated by which equation provided a better fit at each L.

Spatial Approximations
I explored five approximations to the limited-dispersal lot-

tery model, but only the nucleation approximations accu-
rately represented the dynamics during low-density growth
(see fig. A1; figs. A1, B1, B2 available online). For this rea-
son, I leave the development of the local dispersal (LD) and
pairwise approximations to appendix A. Here, I focus pre-
sentation on the nucleation difference approximation, for-
mulated around the average rates of site addition and sub-
traction, which gives results that are comparable to the
classic lottery model. The Markov chain and Avrami’s law
are conceptually related and give almost identical numerical
results. However, they are not as comparable and are less
likely to be applicable empirically. I include them for theo-
retical continuity with nucleation.

Nucleation describes population growth as a process in
which clusters grow or shrink stochastically through addi-
tion and subtraction of sites. Dispersal distance, rφ, defines
the edge of a cluster. Population growth is constrained by
interactions at the edge. Only a subset of resident-occupied
sites at the outer edge of a cluster can be invaded; likewise,
only a subset of invader-occupied sites at the inner edge of
a cluster can be recolonized by the resident.
This content downloaded from 23.235.32
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both are functions of invader population size. Each attempt
to invade or recolonize occurs independently with probabil-
ity gI,xy(t) and gR,xy(t), where subscripts distinguish sites in
NI(p1) being invaded and sites in NR(p1) being recolonized.
The net change in cluster size after all colonization attempts
defines a transition from ci to a new cluster: ci → cj. The clus-
ter transition probability lij is a sum over all possible colo-
nization attempts that can produce the transition ci → cj.
Each transition can be calculated from d, gI,xy(t), and
gR,xy(t). This rationale is expanded in appendix B with an
example calculation.
It is more convenient to base approximations on aver-

age values of these quantities, given the increasing diffi-
culty and time required to calculate lij with larger clusters.
For the limited-dispersal lottery model, this requires ex-
pressions for the average hi,xy of individuals in NI (ci) and
NR(ci). This in turn requires expressions for the averages
of NI(ci), NR(ci), and NM(ci), which gives the number of
invader-resident edges between NI(ci) and NR(ci). Then,
hI(ci)pNM(ci)=NI(ci) and hR(ci)pNM(ci)=NR(ci), where over-
bar indicates the spatial average within the specified region.
This allows gxy(t) to be expressed as

gI(ci)p E

�
hI(ci)R1(t)

hI(ci)R1(t)1 (F2hI(ci))R0(t)

�
,

gR(ci)p E

�
hR(ci)RR(t)

hR(ci)R1(t)1 (F2hR(ci))R0(t)

�
.

(6)

The subscripts I and R indicate gI(ci) and gR(ci) specific to
NI(ci) andNR(ci), respectively. I develop expressions for the
above quantities and support them with numerical results
in appendix B.
The nucleation difference equation assumes that average

transition rates, as a function of cluster size, are sufficient to
capture invasion growth rates. Cluster growth is the sum of
two processes: the number of sites gained and lost for ci. On
average, NI(ci) colonization attempts are made by the in-
vader with average success probability dgI, xy; this is a bino-
mial process, with meanB(p1). Likewise, the resident makes
NI(ci) recolonization attempts on average each with prob-
ability of success dgR,xy; this is also a binomial process, with
meanD(p1). Thus, the net invader growth rate is the differ-
ence between average births B(p1) and deaths D(p1),

pi(t1 1)p pi(t)1
h
B(pi)2D(pi)

i
. (7)

More detail and an expanded form of equation (7) are given
in appendix B. It is worth noting that equation (7) and the
definitions of B(p1) and D(p1) do not depend on the lottery
model specifically.
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The difference approximation can be solved to find cc.
The critical cluster is the population size at which the prob-

context of phase transitions of crystallizing solids (Rikvold
et al. 1994), ferromagnetic materials (Ishibashi and Takagi

Spatial Pattern in the Simulation Model
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abilities of growth andmortality are equal and can be found
by setting B(p1)2D(p1)p d and solving for p1 p cc. This
produces a formula that is a function of dispersal distance
(through the constants f, g, and h) as well as the reproduc-
tion rates R1(t) and R0(t). Due to its length, the formula for
cc is only given in appendix B.

A Markov chain approximation is developed by consid-
ering all possible transitions between cluster sizes explic-
itly and defining the transition matrix P (White 1969), in-
stead of considering only average transition probabilities.
Entries lij of P give the probability of seeing a transition
from cluster size j to cluster size i. The stationary distribu-
tion of P can be solved to obtain the matrix of mean first-
passage times M (Kemeny and Snell 1960; Roberts 1976),
where each entry Mij gives the average time required for a
cluster initiated at size ci to grow to cj. The useful quanti-
ties obtained from M include the nucleation rate htii as M1c

and the duration of invasive growth tg as McF . See appen-
dix B for more details.

The matrix of transition times is most useful in con-
junction with an approximation known as Avrami’s law,
which introduces the additional assumption that L is large
enough for multiple clusters. It has been applied in the
This content downloaded from 23.235.32
All use subject to JSTOR
1971), and ecological invasion (Korniss and Caraco 2005)
to predict changes in the global density of an invader.
Avrami’s law is stated as follows:

pi(t1 1)≈ 12 exp

"
2ln(2)

�
t
hti

�3
#
, (8)

where htip tg 1 htii is referred to as the metastable life-
time. The value of 〈t〉 can be determined from M as M1F.
Alternatively, 〈t〉 can be measured directly from data on
cluster growth by fitting equation (4).

Results
Before investigating the impact of dispersal limitation on
the storage effect, it is worthwhile to establish the proper-
ties of spatial pattern produced by the model. Population
growth is driven by the initiation and expansion of clus-
ters across broad parameter ranges. Figure 1 shows several
realizations of the limited-dispersal lottery model for the
specific case when dp 0.9,R1 p 1,R0 p 1.01, j1 p j0 p 1,
Figure 1: Three simulated invasions are shown for the limited-dispersal lottery model on a large lattice with a low background invasion rate
(Lp 256, bp 1024). The growth rates R1 and R0 are simulated as lognormal random variables with meansR1 p 1 andR0 p 1.01, variances
j2
1 p j2

0 p 1, and correlation rp 0. Dispersal is among neighboring cells only (Fp 9). The insets show the growth of clusters at three ran-
domly chosen time points during invasion. Below each inset, Moran’s I and the semivariogram range rs are given as measures of spatial cor-
relation with nearest-neighbors and the maximum correlation distance between sites, respectively.
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rp 0, bp 1024, and Lp 256. Clusters are evident when
inspecting the lattice (insets) and are supported by Moran’s

Invasion Growth Rates

The growth rate of an invader is lower in simulations of the

Deriving the invasion criterion for the nucleation differ-
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I and the semivariogram range, rs. Cluster properties of the
invader are dynamic during recovery from low density.
Moran’s I decreases from a mean (5SD) of 0.415 0.09 to
0.325 0.07 as invader clusters coalesce to span the lattice
at population sizes 1 L2=2. The value of rs increases from
a measured value of 10.15 6.7 to a maximum of 2255
28.9 as clusters coalesce (fig. 1). Dynamic, cluster-driven
growth was present at every examined parameter combina-
tion, and the properties of clusters vary only subtly when
changing the intensity of interspecific interaction by vary-
ing r or d (results not shown).

The match of the observed cluster dynamics to that pre-
dicted by nucleation theory provides evidence of nucleation
dynamics. Both single and multicluster growth regimes are
present when L and b are varied and other parameters are
fixed (fig. 2). A single-cluster regime was identified by fit-
ting equation (4) to the cumulative distribution of wait
times for the resident population, Pinv(t). The multicluster
regime was identified using equation (5) to fit the cumula-
tive distribution of Pinv(t). The R2 goodness-of-fit for both
equations (4) and (5) was calculated for 1,000 simulations
at each order of magnitude from bp 1022 to bp 1026, with
all other parameters fixed at dp 0.9, R1 p 1, R0 p 1.01,
j2
1 p j2

0 p 1, rp 0, and Lp 32. Values above bp 1024

were fit better by equation (4) (R2 1 0.98), indicating lat-
tices in the single-cluster regime, whereas values below bp
1024 were within the multicluster regime (R2 1 0.98). At bp
1024, both equations fit with equivalent R2 values, reflect-
ing the fact that the transition from single to multicluster
regime is continuous. Near bp 1024, enough clusters are
present to make equation (4) a less adequate fit, but there
are not yet enough clusters to make equation (5) a good
fit. This goodness-of-fit test produced equivalent results to
the example reported here across a broad range of param-
eter values (results not shown). Thus, recovery from low
density always appears to occur through nucleation in the
limited-dispersal lottery model.

Changing species similarity in their environmental re-
sponse by varying r also changes the shape of the cumu-
lative distributions, equations (4) and (5). Figure 2A shows
examples of the cumulative distribution of Pinv(t) on a log-
linear scale in the single-cluster regime (Lp 32) for rp
20.8, 0, 0.8, and figure 2B shows example fits in the multi-
cluster case (Lp 256) for the same values of r. The change
in curvature across r reflects an increase in interspecific
relative to intraspecific competition and an accompanying de-
crease in invasion growth rates; when competition is more
intense, invasive growth is slower, translating into a lower
probability that an invader species has reached the prede-
fined population threshold F in a certain number of gen-
erations.
This content downloaded from 23.235.32
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limited-dispersal lottery model, relative to the classic lot-
tery model. This means that dispersal limitation tends to in-
crease the strength of interspecific, relative to intraspecific,
competition an invader experiences. Figure 3A demon-
strates this result for the specific case when dp 0.9, R1 p
1, R0 p 1.01, j2

0 p j2
1 p 1, rp 0, bp 1024, and Lp 256.

Here, the mean invasion growth rate (5SD) was 0.00925
.0011 for the limited-dispersal simulation model calculated
from 3,000 runs. The invasion growth rate was 0.0676 for
the lottery model. These invasion growth rates were best
approximated by the nucleation approximations: Avrami’s
law slightly underpredicted at 0.0088, and the difference ap-
proximation slightly overpredicted at 0.0108.
The impact of dispersal limitation was greatest on inva-

sion growth rates when species responses to environmental
fluctuations, as measured by r, were the most different. Fig-
ure 3B shows that the difference between invasion growth
rates of the limited-dispersal and classic lottery model in-
creased with decreasing r. Decreasing r permits each spe-
cies to have an increasing number of recruitment events
where it is favored over its competitor, which in turn in-
creases invasion growth rates and reduces interspecific rel-
ative to intraspecific competition. This increasing differ-
ence in invasion growth rate between models indicates that
species advantages during favorable recruitment events are
substantially diminished by limited dispersal.

Invasion Criteria
ence approximation reveals themechanism that reduces in-
vasion growth rates in the limited-dispersal lottery model
(eq. [B18]). This invasion criterion can be compared to that
of the classic lottery (eq. [3]) in terms of a damping coeffi-
cientDN multiplying R1(t)=R0(t), the invader relative advan-
tage in a generation, of equation (3):

DN p
( fcc 1 hI)(gcc 1 hM)

ccfF( fcc 1 hI)1 (gcc 1 hM)½(R1(t)=R0(t))2 1�g

2
R0(t)
R1(t)

�
(gcc 1 hM)

(gcc 1 hM)½12 (R1(t)=R0(t))�1Fcc(R1(t)=R0(t))
2 1

�
.

(9)

The constants f and g relate cluster size to the average neigh-
borhoods hI(pi) and hR(pi) experienced by sites in NI(pi)
and NR(pi), respectively: f ≈ dφ and g ≈ dφ(dφ 2 1). The con-
stants hI and hM contain additional terms that are important
when the invader population is very small and are used to
constrain the average neighborhoods so that NI(1)p 1 and
NR(1)p (F2 1). See appendix B for more details. Damp-
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appendix A. served for the resident. Coexistence in the classic lottery

Limited Dispersal and the Storage Effect 641
The magnitude of DN is a function of invader advantage
in a recruitment event (fig. 4A). When the invader has the
advantage (R1(t)=R0(t)1 1), then DN ! 1, and its advantage
is reduced. When the resident has a high recruitment event
This content downloaded from 23.235.32
All use subject to JSTOR
model is driven by R1(t)=R0(t). Species 1 has positive growth
whenR1(t)=R0(t)1 1 andmust have R1(t)=R0(t) 1 1 on aver-
age to invade successfully; coexistence requires that species
0 also have R0(t)=R1(t)1 1 on average when it is invading
ing coefficients for the other approximations are given in (R1(t)=R0(t)! 1), thenDN 1 1, and the reciprocal effect is ob-

Figure 2: Cumulative probability Pinv(t) that the invader species has reached a certain size (0.1#equilibrium density) by a given time in the
limited-dispersal lottery model. Panels show the cumulative distributions in either the single-cluster (A) or multicluster (B) regime. Results are
based on 1,000 simulations with parameter values dp 0.9,R1 p 1, andR0 p 1.01, j2

0 p j2
1 p 1, rp 0 and bp 1024. When Lp 32, the single-

cluster distribution (A) is best fit as a Poisson (filled circles, with solid best-fit curve); when Lp 256, the multicluster distribution (B) is best fit
as a Gaussian distribution (open squares, with dashed best-fit curve). Examples of the cumulative distributions in B and C show that increasing
r creates longer wait times, reflecting an increase in interspecific relative to intraspecific competition.
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Figure 3: Invasion growth rates (A) and the relative change in invasion growth rates with increasing competition (B) for the simulated limited-
dispersal lottery model, classic lottery model, and the nucleation difference approximation. A, Three example runs of the simulation are plotted
against a mean (5SD) log-linear slope fit from 3,000 runs (0.00925 0.0011). The invasion growth rate predicted by the classic lottery model
(mean-field approximation) is much larger (0.0676). The nucleation difference approximation provides the best match to the actual invasion
(0.0108). B, Decreasing r simulates the case when species become more different in their response to environmental fluctuations. The impact
of dispersal limitation increases as r decreases, evidenced by the difference between invasion growth rates in the classic lottery model and
the limited-dispersal lottery model. This indicates that dispersal limitation decreases the strength of the storage effect because it reduces species
advantages during favorable recruitment periods, making species appear more similar in their response to environmental fluctuations. Param-
eter values are as follows: dp 0.9, R1 p 1, R0 p 1.01, j2

0 p j2
1 p 1, rp 0, Lp 256, and bp 1024.
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Figure 4: The impact of dispersal limitation as captured by the damping coefficient in the invasibility criterion of the nucleation difference
approximation (A) with respect to dispersal distance (B). A, Relative magnitude of damping in the nucleation difference approximation DN

(dotted line) and the classic lottery model (horizontal line at 1) as function of per-generation invader relative advantage R1(t)=R0(t). When
the invader produces more potential recruits, DN decreases its advantage but also reduces the resident advantage when it produces more po-
tential recruits. B, Damping effect of DN decreases as (average) dispersal distance increases. This is summarized using DN, 0(dφ), which gives the
magnitude of DN when R1(t)=R0(t)p 0; in this case, the resident will experience the strongest damping effect (the reciprocal case for the in-
vader occurs when R0(t)p 0 and the damping is 1=DN, 0(dφ)). The Y-axis is scaled relative to the strongest damping effect DN, 0(3). This change
is the same when dispersal is modeled with exponential and Gaussian dispersal kernels (for these kernels, rφ corresponds to average dispersal
distance). Arrows place results from the preliminary analysis: Pectocarya recurvata (dφ p 3) and Scleromystax barbatus (11) are desert annuals
(Venable et al. 2008), Croton billbergianus (3) and Thelidomus aspera (63) are tropical trees, and BCI average gives the overall average dispersal
distance at Barro Colorado Island (11).
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against species 1. Thus DN will reduce the overall impor-
tance of these events and reduce the likelihood that these

is an analytical limit of the magnitude of damping, it is in-
dicative of the maximum amount by which dispersal lim-

The relative increase in interspecific, relative to intraspe-

644 The American Naturalist
conditions for coexistence are met.
Analysis of DN as dφ increases provides insight into the

conditions under which dispersal limitation has the most
impact on coexistence. Expanding equation (9) shows that
DN is driven by lead terms in the numerator of d5

φc3c 1
d4
φc2fhI 1 cc½(R1(t)=R0(t))–1�g, and similarly in the denom-

inator d5
φc3c 1 d4

φc2fhI 1 2cc½(R1(t)=R0(t))–1�g. When dφ is
small, terms less than fifth order drive the damping effect.
The fourth-order terms are nearly identical except for the
factor of 2 in the denominator; this will cause the denomi-
nator to be noticeably larger (when R1(t)1R0(t)) or smaller
(when R1(t)!R0(t)) relative to the numerator. As dφ in-
creases, the damping effect diminishes, because the identi-
cal fifth-order terms in the numerator and denominator over-
whelm the lower-order terms, and DN ≈ 1.

The behavior of DN as it approaches 1 provides insight
into the impact of dispersal limitation on invasion growth
rates and the storage effect. This can be summarized by con-
sidering the change in DN when R1(t)=R0(t)p 0, abbrevi-
ated henceforth asDN, 0(dφ). AtDN , 0(dφ), the resident will ex-
perience the strongest damping effect; given the symmetry
assumptions of the model, the strongest damping effect on
the invader should approach 1=DN , 0(dφ). Because DN , 0(dφ)
This content downloaded from 23.235.32
All use subject to JSTOR
itation can reduce potential coexistence. Values of DN , 0(dφ)
are plotted against a range of dispersal distances in figure 4B.
The maximum value of DN , 0(dφ) is obtained at dφ p 3
(DN , 0(3)p 1.35); at dφ p 7, the effect of DN , 0(dφ) has already
decreased 64% (DN , 0(7)p 1.13), and by dφ p 20, it has de-
creased 90% (DN , 0(20)p 1.04).

Coexistence
cific, competition created by dispersal limitation decreases
the potential for coexistence by the storage effect in com-
parison to the classic lottery model. The strength or poten-
tial for coexistence can be quantified in relation to the fit-
ness difference between species, quantified here as the ratio
R1=R0/R0. The distance between the upper and lower coexis-
tence bounds onR1=R0 provides a measure of the magnitude
of the storage effect. Larger fitness differences are tolerated
when themagnitude of the storage effect is higher; thus, I re-
fer to the bounds onR1=R0 as measure of the strength of the
storage effect (Chesson 2000b). Figure 5 shows the change
in bounds onR1=R0 as r is increased to make species more
similar in their reproductive response to the environment.
Figure 5: Coexistence bounds as a function of the fitness differenceR1=R0 and interspecific correlation in reproduction rates r. Each pair of
curves gives the upper and lower bounds onR1=R0 that permit coexistence. The distance between upper and lower bounds measures the total
strength of the storage effect as a function of r and other key parameters of the model (d, j2

0 , j2
1). The curves converge on the line atR1=R0 p 1;

when growth rates are equivalent, coexistence is possible regardless of how similar species are. Coexistence is reduced in the limited-dispersal
model, relative to the classic lottery model. The nucleation approximations provide the most accurate prediction of species coexistence (nucleation
difference approximation shown). Parameter values are as follows: dp 0.9, R1 p 1, R0 p 1.01, j2

0 p j2
1 p 1, rp 0, Lp 256, and bp 1024.
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The distance between bounds increases as r approaches21
for each model, showing the increased strength of the stor-

Discussion

Limited Dispersal and the Storage Effect 645
age effect. However, the total area from rp 21 to rp 1 is
larger for the classic lottery model than it is for the limited-
dispersal model.

Preliminary Analysis of Dispersal-Limited Communities
I used the above results to perform a preliminary analysis

of reduction in the potential for the storage effect in two
dispersal-limited plant communities: desert annuals (Pake
and Venable 1995; Chesson et al. 2004; Angert et al. 2009)
and tropical forests (Usinowicz 2012). This analysis first
requires adaptation of theoretical results to accommodate
more biologically realistic dispersal kernels. Minor changes
inhI(pi) andhR(pi) lead to slight differences in DN (app. C).
Results for exponential andGaussian dispersal kernels (Clark
1998) are shown infigure 4B. The change inDN , 0(dφ) for these
dispersal kernels was nearly identical to Moore neighbor-
hoods, indicating that there is almost no difference in over-
all behavior of the system. The average dispersal distance of
each exponential kernel was used for rφ, calculated accord-
ing to equation (4) of Clark et al. 1998. Dispersal kernels
have been fit for certain desert annuals and tropical trees
(Muller-Landau et al. 2008; Venable et al. 2008). From these
studies, I obtained mean dispersal distances, which I scaled
by adult size to adapt field measurements to units more
similar to the theoretical model (i.e., in units of adult terri-
tory). These scaled average dispersal distances were used as
species-specific values of rφ (dφ p 2rφ 1 1). Using DN , 0(dφ)
(fig. 5A), it was then possible to approximate the potential
impact of dispersal limitation.

The reduction in the storage effect from dispersal limita-
tion is likely to be higher in desert annuals, although some
tropical trees can be very dispersal limited. The desert an-
nuals Pectocarya recurvata and Schismus barbatus (Vena-
ble et al. 2008) have dispersal radii rφ of approximately
0.7 m/0.15 m ≈ 5 units and 0.29 m/0.2 m ≈ 1 unit, respec-
tively. The dispersal kernels of 44 species from the tropi-
cal forest of Barro Colorado Panama (BCI) have been fit
(Muller-Landau et al. 2008), which can be scaled relative to
typical adult crown width (O’Brien et al. 1995) to give a
community-wide average for rφ of 5 (11) units (21 m/4 m),
a minimum rφ of 1 (3) unit (5 m/4 m) for Croton billber-
gianus, and a maximum rφ of 31 (63) units (125 m/4 m)
for Trattinnickia aspera. Interpreting fromDN , 0(dφ) (fig. 5B),
dispersal limitation will strongly reduce the storage effect
when S. barbatus competes against similar species, whereas
P. recurvata experiences only about 20% of this effect. At
BCI, C. billbergianus will experience a strong reduction in
the storage effect from dispersal limitation, but most species
will experience !20% of this effect, and T. aspera experiences
only 1.3% of this effect.
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Limited dispersal can reduce the potential for coexistence
in the lottery model by preventing species from accessing
sites for recruitment. This leads to a loss in reproductive
effort; at the extreme that no open sites are within dis-
persal distance, a species experiences zero recruitment re-
gardless of how much they reproduce. In theoretical anal-
yses, this is captured through a damping coefficient that
increasingly reduces the advantage of either species as re-
cruitment periods become more favorable (fig. 4A). Aver-
aged over many recruitment events, this decreases invasion
growth rates (fig. 3A) and reduces the potential for coexis-
tence (fig. 5). Species that differ markedly in their environ-
mental response (i.e., that have low r) are the most strongly
affected (fig. 3B). In biological terms, dispersal limitation
makes species with different reproductive responses to the
environment appear more similar in their recruitment rates,
thus diminishing the potential for the (temporal) storage
effect.
Nucleation theory was successful in characterizing the

dynamics of the limited-dispersal lottery model. Not only
were clusters present in simulations (fig. 1), but both single-
and multicluster growth regimes were observed when spa-
tial extent and background propagule rate were varied, and
the progression of cluster growth was fit by models from
nucleation theory (fig. 2). The nucleation approximations
best captured the impact of dispersal limitation on inva-
sion growth rates (fig. B1) and coexistence (fig. B2). By re-
casting population growth as a transition between cluster
sizes, interactions at the scale of the local neighborhood
are highly constrained to represent the edge of the growing
cluster. In comparison, assuming that sites are indepen-
dent (local dispersal) or that pairs of sites are indepen-
dent (pairwise) lets species seem more evenly dispersed,
and thus an invader will seem to have more access to sites.
Because there is almost no difference among the nucle-
ation approximations in their ability to represent spatial dy-
namics, these approximations can be used interchange-
ably according to the data available. However, the Markov
chain approximation and Avrami’s law are not as likely to
be useful in an empirical setting because of the intensity of
data needed for fitting, and thus they serve primarily to
make the theoretical connection to nucleation more explicit.
Species that disperse propagules farther experience greater

potential for coexistence by the temporal storage effect (fig. 4B).
For the investigations here, the classic lottery model repre-
sents an upper limit on the strength of this mechanism, be-
cause global dispersal allows species to take full advantage of
periods of high reproductive output. The farthest-dispersing
species are the closest to this limit, as in the case of Trat-
tinnickia aspera, a tropical tree included in the preliminary
analysis with an average dispersal distance of 125 m. Many
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other species are less able to capitalize on recruitment fluc-
tuations but still only experience small reductions in the

Empirical support of the theoretical predictions made
here could be found by extending existing studies. Evidence

646 The American Naturalist
potential for the storage effect. Small-seeded species with
mechanistic dispersal methods (i.e., not by wind or ani-
mals) typically disperse the shortest distances (Levin et al.
2003) and are therefore the least likely to depend on the tem-
poral storage effect for coexistence. These results suggest
that the storage effect may be more important in commu-
nities such as tropical forests, where species disperse long dis-
tances on average (Seidler and Plotkin 2006; Muller-Landau
et al. 2008). This provides theoretical support for the im-
portance of long-distance dispersal mechanisms in plant
communities (Seidler and Plotkin 2006), especially instances
where animals have been shown to disperse preferentially
to gaps (Howe and Smallwood 1982); these forms of dis-
persal increase the likelihood that propagules will find avail-
able sites.

Dispersal limitation can have contrasting effects on co-
existence, depending on features of species and their envi-
ronments (Levine and Murrell 2003). The results presented
here are consistent with previous theoretical studies of
competition when there is no environmental heterogene-
ity; limiting dispersal slows growth rates and decreases
the range of conditions allowing coexistence (Neuhauser
and Pacala 1999; Bolker et al. 2003). It is difficult to judge
their overall generality, because results here are derived
for the lottery model in particular and make several as-
sumptions that restrict interpretation, particularly concern-
ing the symmetry of species (symmetrical dispersal and
survival) and the mode of species-specific environmen-
tal response (through reproduction rates). It is also diffi-
cult to find empirical support for results, largely because
of a lack of relevant studies. The spatial distribution of in-
dividuals (i.e., clustering) has been measured more often
than underlying processes, such as environmental heteroge-
neity or species dispersal abilities (Archer et al. 1988; Rees
et al. 1996; Idjadi and Karlson 2007; Sears and Chesson
2007; Raventós et al. 2010). These studies have shown that
the covariance across space between growth rates and spe-
cies densities favors coexistence, citing density-dependence
in various demographic parameters as evidence (Rees et al.
1996; Sears and Chesson 2007; Raventós et al. 2010). Al-
though theory suggests that limited dispersal can enhance
the potential for coexistence in these cases, this depends on
the extent that spatial variation in growth rates is driven
by fixed environmental heterogeneity (Snyder and Chesson
2003). As favorable habitat becomes more ephemeral, spe-
cies persistence is hindered by dispersal limitation. Changes
in the spatial structure of density-dependence through time
(e.g., a nonstationary spatial covariance) could indicate the
overall stability of spatial heterogeneity, but determining
the amount that dispersal limitation supplements or reduces
coexistence in this context still requires additional studies.
This content downloaded from 23.235.32
All use subject to JSTOR
that dispersal limitation reduces coexistence by the tem-
poral storage effect could be most directly obtained by ex-
perimentally manipulating dispersal in plant communities,
such as desert annuals (Pake and Venable 1995; Angert et al.
2009). Here, direct comparisons of diversity and competi-
tive effects could be made between a community where dis-
persal was naturally limited and one in which investigators
collected seeds, mixed them, and distributed the mix evenly
across plots. Direct experimental manipulation is less real-
istic for long-lived communities, such as tropical forests,
where inferring long-term community dynamics may require
a combination of long-term demographic data and models.
The nucleation difference approximation is useful in this
context, especially where previous studies of the storage ef-
fect could be supplemented with data on dispersal. Addi-
tionally, B(p1) and D(p1) could be determined from field
data or fitted statistical models. This is amenable to an
approach such as that used by Adler et al. (2010), where
individual-based models and integral projection models
were used to investigate coexistence in a perennial sage-
brush community. Long-term, spatially explicit demographic
data for this community were used to fit survival and
growth curves of species as a function of their local neigh-
borhoods. Because these survival and growth functions are
neighborhood-dependent, they are analogous to the coloniza-
tion and mortality probabilities in B(p1) and D(p1). The
impact of dispersal limitation on coexistence could then
be determined by using average dispersal distances to cal-
culate new invasion growth rates from the nucleation dif-
ference equation and then comparing these to the invasion
growth rates without dispersal limitation.
Dispersal limitation appears to drive trade-offs between

coexistence mechanisms, increasing potential coexistence
in spatial mechanisms (Bolker et al. 2003; Snyder and Ches-
son 2003) but decreasing it in nonspatial mechanisms (Neu-
hauser and Pacala 1999; Bolker et al. 2003; Levine and
Murrell 2003). The relative importance of spatial and non-
spatial mechanisms and the individual influences of simul-
taneous endogenous and exogenous processes on coexis-
tence are largely unexplored. The theory presented here
provides tools to assess the impact of dispersal limitation
on the storage effect that are applicable to empirical anal-
yses and complimentary to existing coexistence theory that
quantifies the combined effect of endogenous and exoge-
nous processes on vital rates (Rees et al. 1996; Chesson
2000a; Bolker et al. 2003; Snyder and Chesson 2003). Many
communities where the storage effect is likely to operate
are also those where dispersal limitation plays an important
role in population dynamics; thus, it will be important to
consider the full implications of dispersal limitation for co-
existence on a community-by-community basis.
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